Skip to main content

Posts

Showing posts from May, 2017

Defects in diamond nanomaterial speeding up the quantum computers

Quantum computers are experimental devices that offer large speedups on some computational problems. One promising approach to building them involves harnessing nanometer-scale atomic defects in diamond materials. But practical, diamond-based quantum computing devices will require the ability to position those defects at precise locations in complex diamond structures, where the defects can function as qubits, the basic units of information in quantum computing. In  Nature Communications , a team of researchers from MIT, Harvard University, and Sandia National Laboratories reports a new technique for creating targeted defects, which is simpler and more precise than its predecessors. In experiments, the defects produced by the technique were, on average, within 50 nanometers of their ideal locations. Appealing defects Quantum computers, which are still largely hypothetical, exploit the phenomenon of quantum "superposition," or the counterintuitive ability of small p...

Quantum switch:a new revolution in the technology

When a ballerina pirouettes, twirling a full revolution, she looks just as she did when she started. But for electrons and other subatomic particles, which follow the rules of quantum theory, that's not necessarily so. When an electron moves around a closed path, ending up where it began, its physical state may or may not be the same as when it left. Now, there is a way to control the outcome, thanks to an international research group led by scientists at the National Institute of Standards and Technology (NIST). The team has developed the first switch that turns on and off this mysterious quantum behavior. The discovery promises to provide new insight into the fundamentals of quantum theory and may lead to new quantum electronic devices. To study this quantum property, NIST physicist and fellow Joseph A. Stroscio and his colleagues studied electrons corralled in special orbits within a nanometer-sized region of graphene -- an ultrastrong, single layer of tightly packed carb...

Hybrid graphene and CNT anode battery

Rice University scientists have created a rechargeable lithium metal battery with three times the capacity of commercial lithium-ion batteries by resolving something that has long stumped researchers: the dendrite problem. The Rice battery stores lithium in a unique anode, a seamless hybrid of graphene and carbon nanotubes. The material first created at Rice in 2012 is essentially a three-dimensional carbon surface that provides abundant area for lithium to inhabit. The anode itself approaches the theoretical maximum for storage of lithium metal while resisting the formation of damaging dendrites or "mossy" deposits. Dendrites have bedeviled attempts to replace lithium-ion with advanced lithium metal batteries that last longer and charge faster. Dendrites are lithium deposits that grow into the battery's electrolyte. If they bridge the anode and cathode and create a short circuit, the battery may fail, catch fire or even explode. Rice researchers led by chemist...

Silver nanospots could reduce energy consumption in quantum computing

Tomorrow's computers will run on light, and gold nanoparticle chains show much promise as light conductors. Now Ludwig-Maximilians-Universitaet (LMU) in Munich scientists have demonstrated how tiny spots of silver could markedly reduce energy consumption in light-based computation. Today's computers are faster and smaller than ever before. The latest generation of transistors will have structural features with dimensions of only 10 nanometers. If computers are to become even faster and at the same time more energy efficient at these minuscule scales, they will probably need to process information using light particles instead of electrons. This is referred to as "optical computing." Fiber-optic networks already use light to transport data over long distances at high speed and with minimum loss. The diameters of the thinnest cables, however, are in the micrometer range, as the light waves -- with a wavelength of around one micrometer -- must be able to oscillate...

graphene based quantum capacitor

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures. In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based quantum capacitor, compatible with cryogenic conditions of superconducting circuits, and based on two-dimensional (2D) materials. When connected to a circuit, this capacitor has the potential to produce stable qubits and also offers other advantages, such as being relatively easier to fabricate than many other known nonlinear cryogenic devices, and being much less sensitive to electromagnetic interference. This research was published in  2D Materials and Applications . Normal digital computers operate on the ba...

Building blocks of nanoelectronics

The team of researchers headed by Prof. Dr. Sabine Maier, Prof. Dr. Milan Kivala and Prof. Dr. Andreas Görling has successfully assembled and tested conductors and networks made up of individual, newly developed building block molecules. These could in future serve as the basis of components for optoelectronic systems, such as flexible flat screens or sensors. The FAU researchers have published their results in the journal  Nature Communications . Lithographic techniques in which the required structures are cut from existing blocks are mainly employed at present to produce micro- and nano-electronic components. 'This is not unlike how a sculptor creates an object from existing material by cutting away what they do not need. How small we can make these structures is determined by the quality of the material and our mechanical skills,' explains Prof. Dr. Sabine Maier from the Chair of Experimental Physics. "We now have something like a set of Lego bricks for use in the ...

Single molecule diode with high rectification ratios

Researchers of the University of Barcelona have led a project to create a diode out of a 1 nm-sized single molecule with high rectification ratios. Diodes, commonly used in everyday electronic devices, allow current to flow in one direction while blocking the current in the opposite direction. Today, researchers are approaching the physical limit in downsizing electronic components. According to Ismael Díez Pérez, who is leading the project at the University of Barcelona and is also member of the Institute of Bioengineering of Catalonia (IBEC), "In order to go to the next level of miniaturization, we have to use individual molecules as the active components of the circuits." This study, recently published in the journal  Nature Communications , has used an organic molecule sandwiched between two nano-electrodes connected altogether in a circuit that is barely 1 nm long. The resulting single-molecule diode is smaller and much more efficient than any other reported. ...

Diamond-like photonic nanocrystal: Perfect omnidirectional reflector

Through advanced calculations physicists and mathematicians have discovered that a thin, diamond-like photonic nanostructure reflects a surprisingly broad range of colors of light, from all angles. This causes the material to have great potential as a back reflector to enhance the efficiency of solar cells or tiny on-chip light sources. The efficiency of solar cells depends on trapping and absorbing light and can be increased by using a back reflector: a mirror behind the solar cell material that reflects light that was not absorbed and leads it back into the solar cell. The ideal mirror reflects light incident from any angle, known as omnidirectional reflectance, and for all frequencies (or colors) of light. Such omnidirectional reflectance for dielectric structures is associated with three-dimensional photonic crystal nanostructures that sustain a so-called complete photonic band gap. However, researchers always thought such structures would have a narrow frequency range of o...

Novel Nano diamond based dye to improve MRI

Scientists from the National University of Singapore (NUS) have developed a novel nanodiamond-based contrast agent -- a chemical "dye" used to enhance the visibility of internal body structures in magnetic resonance imaging (MRI) -- that improves visualisation of liver cancer tumours. Better and more sensitive imaging contributes towards detecting liver cancer and is crucial for planning for treatment. MRI is a medical imaging technique commonly used for cancer diagnosis and to track the progress of patients after treatment. Currently, there are two modes of MRI imaging, T1-weighted and T2-weighted imaging, and patients are often given contrast agents to improve imaging quality. However, each imaging mode requires a specific class of contrast agent which cannot be used together. This poses a greater challenge in the diagnosis of liver cancer, where T2-weighted imaging is still not considered reliable, and both T1- and T2-weighted imaging can be confounded by tumour vascul...

Nano thin film Barium Stannate :New revolution to electronics and solar industry

A team of researchers, led by the University of Minnesota, have discovered a new nano-scale thin film material with the highest-ever conductivity in its class. The new material could lead to smaller, faster, and more powerful electronics, as well as more efficient solar cells. The discovery is being published today in  Nature Communications , an open access journal that publishes high-quality research from all areas of the natural sciences. Researchers say that what makes this new material so unique is that it has a high conductivity, which helps electronics conduct more electricity and become more powerful. But the material also has a wide bandgap, which means light can easily pass through the material making it optically transparent. In most cases, materials with wide bandgap, usually have either low conductivity or poor transparency. "The high conductivity and wide bandgap make this an ideal material for making optically transparent conducting films which could be used...

Nano Thermal Mechanical Rectification : A New way to harness heat to power computer

One of the biggest problems with computers, dating to the invention of the first one, has been finding ways to keep them cool so that they don't overheat or shut down . Instead of combating the heat, two University of Nebraska-Lincoln engineers have embraced it as an alternative energy source that would allow computing at ultra-high temperatures. Sidy Ndao, assistant professor of mechanical and materials engineering, said his research group's development of a nano-thermal-mechanical device, or thermal diode, came after flipping around the question of how to better cool computers. "If you think about it, whatever you do with electricity you should (also) be able to do with heat, because they are similar in many ways," Ndao said. "In principle, they are both energy carriers. If you could control heat, you could use it to do computing and avoid the problem of overheating." A paper Ndao co-authored with Mahmoud Elzouka, a graduate student in mechanica...

Researchers simplified studying of peizoelectric materials

Researchers have developed a new approach for studying piezoelectric materials using ultrafast 3-D X-ray imaging and computer modeling. Their integrated approach can help us better understand material behavior and engineer more powerful and energy-efficient technologies. Read More Mathew  J. Cherukara, Kiran Sasikumar, Wonsuk Cha, Badri Narayanan, Steven J. Leake, Eric M. Dufresne, Tom Peterka, Ian McNulty, Haidan Wen, Subramanian K. R. S. Sankaranarayanan, Ross J. Harder.  Ultrafast Three-Dimensional X-ray Imaging of Deformation Modes in ZnO Nanocrystals .   Nano Letters , 2017; 17 (2): 1102 DOI:   10.1021/acs.nanolett.6b04652

Indian researchers develops nano version of a cancer drug

For the first time, a nano version of carboplatin, used in chemotherapy treatment has been developed, wherein unlike the existing molecule, a higher concentration of the drug will attack the cancerous cells and increase the chances of survival of a patient. A group of five Indian researchers and doctors from the Indian Institute of Technology (IIT), Mumbai; LV Prasad Eye Institute, Apollo Hospitals, Hyderabad; and Tata Memorial Hospital, Mumbai; has researched and developed a nano version of an existing cancer drug, carboplatin. This will reach the cancerous cells at a faster pace, reduce toxicity levels of the chemotherapy drug and further increase chances of survival of the patient. Carboplatin is a chemotherapy drug used against some forms of cancer, especially against cancers affecting brain and central nervous system. If this nano drug is proved successful in human trials, this would be the first nano version of a carboplatin drug in the world. Dr Debraj Shome, Facial Cancer...