Skip to main content

Single molecule diode with high rectification ratios

Researchers of the University of Barcelona have led a project to create a diode out of a 1 nm-sized single molecule with high rectification ratios. Diodes, commonly used in everyday electronic devices, allow current to flow in one direction while blocking the current in the opposite direction.
Today, researchers are approaching the physical limit in downsizing electronic components. According to Ismael Díez Pérez, who is leading the project at the University of Barcelona and is also member of the Institute of Bioengineering of Catalonia (IBEC), "In order to go to the next level of miniaturization, we have to use individual molecules as the active components of the circuits."
This study, recently published in the journal Nature Communications, has used an organic molecule sandwiched between two nano-electrodes connected altogether in a circuit that is barely 1 nm long. The resulting single-molecule diode is smaller and much more efficient than any other reported. "This approach favours the assembly of thousands of billions of diodes on a tiny silicon chip," affirms Díez-Pérez.
The reported molecular diode can allow current to go in one direction 4,000 times more than in the opposite direction. This efficiency is comparable to the diodes that are currently used, which are much bigger.
The team is now working on achieving higher current rectification ratios and increasing the lifetime of these single-molecule circuits. This research brings us a step closer to the realisation of single-molecule devices.

Source

  1. Albert C. Aragonès, Nadim Darwish, Simone Ciampi, Fausto Sanz, J. Justin Gooding, Ismael Díez-Pérez. Single-molecule electrical contacts on silicon electrodes under ambient conditionsNature Communications, 2017; 8: 15056 DOI: 10.1038/NCOMMS15056
  2. University of Barcelona. "Single-molecule diode created." ScienceDaily. ScienceDaily, 25 April 2017. .

Comments

Popular posts from this blog

Nanoimprinting accelerating the fabrication of nano-optical devices

Combining speed with incredible precision, a team of researchers has developed a way to print a nanoscale imaging probe onto the tip of a glass fiber as thin as a human hair, accelerating the production of the promising new device from several per month to several per day. The high-throughput fabrication technique opens the door for the widespread adoption of this and other nano-optical structures, which squeeze and manipulate light in ways that are unachievable by conventional optics. Nano-optics have the potential to be used for imaging, sensing, and spectroscopy, and could help scientists improve solar cells, design better drugs, and make faster semiconductors. A big obstacle to the technology's commercial use, however, is its time-consuming production process. The new fabrication method, called fiber nanoimprinting, could unplug this bottleneck. It was developed by scientists at the Molecular Foundry, located at the Department of Energy's Lawrence Berkeley Nat

Hybrid graphene and CNT anode battery

Rice University scientists have created a rechargeable lithium metal battery with three times the capacity of commercial lithium-ion batteries by resolving something that has long stumped researchers: the dendrite problem. The Rice battery stores lithium in a unique anode, a seamless hybrid of graphene and carbon nanotubes. The material first created at Rice in 2012 is essentially a three-dimensional carbon surface that provides abundant area for lithium to inhabit. The anode itself approaches the theoretical maximum for storage of lithium metal while resisting the formation of damaging dendrites or "mossy" deposits. Dendrites have bedeviled attempts to replace lithium-ion with advanced lithium metal batteries that last longer and charge faster. Dendrites are lithium deposits that grow into the battery's electrolyte. If they bridge the anode and cathode and create a short circuit, the battery may fail, catch fire or even explode. Rice researchers led by chemist

2D FET from polymorphic material molbdenum telluride

In simple terms, FETs can be thought as high-speed switches, composed of two metal electrodes and a semiconducting channel in between. Electrons (or holes) move from the source electrode to the drain electrode, flowing through the channel. While 3D FETs have been scaled down to nanoscale dimensions successfully, their physical limitations are starting to emerge. Short semiconductor channel lengths lead to a decrease in performance: some electrons (or holes) are able to flow between the electrodes even when they should not, causing heat and efficiency reduction. To overcome this performance degradation, transistor channels have to be made with nanometer-scale thin materials. However, even thin 3D materials are not good enough, as unpaired electrons, part of the so-called "dangling bonds" at the surface interfere with the flowing electrons, leading to scattering. Passing from thin 3D FETs to 2D FETs can overcome these problems and bring in new attractive properties. &quo