Skip to main content

graphene based quantum capacitor

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.
In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based quantum capacitor, compatible with cryogenic conditions of superconducting circuits, and based on two-dimensional (2D) materials. When connected to a circuit, this capacitor has the potential to produce stable qubits and also offers other advantages, such as being relatively easier to fabricate than many other known nonlinear cryogenic devices, and being much less sensitive to electromagnetic interference. This research was published in 2D Materials and Applications.
Normal digital computers operate on the basis of a binary code composed of bits with a value of either 0 or 1. In quantum computers, the bits are replaced by qubits, which can be in two states simultaneously, with arbitrary superposition. This significantly boosts their calculation and storage capacity for certain classes of applications. But making qubits is no mean feat: quantum phenomena require highly controlled conditions, including very low temperatures.
To produce stable qubits, one promising approach is to use superconducting circuits, most of which operate on the basis of the Josephson effect. Unfortunately, they are difficult to make and sensitive to perturbing stray magnetic fields. This means the ultimate circuit must be extremely well shielded both thermally and electromagnetically, which precludes compact integration.
At EPFL's LPQM, this idea of a capacitor that's easy to make, less bulky and less prone to interference has been explored. It consists of insulating boron nitride sandwiched between two graphene sheets. Thanks to this sandwich structure and graphene's unusual properties, the incoming charge is not proportional to the voltage that is generated. This nonlinearity is a necessary step in the process of generating quantum bits. This device could significantly improve the way quantum information is processed but there are also other potential applications too. It could be used to create very nonlinear high-frequency circuits -- all the way up to the terahertz regime -- or for mixers, amplifiers, and ultra strong coupling between photons.

  1. Sina Khorasani, Akshay Koottandavida. Nonlinear graphene quantum capacitors for electro-opticsnpj 2D Materials and Applications, 2017; 1 (1) DOI: 10.1038/s41699-017-0011-9
x
Journal Reference:

Comments

Popular posts from this blog

Intel's upcoming 10-nanometer chip manufacturing technology

At long last, chip giant  Intel  (NASDAQ: INTC) opened up about its upcoming 10-nanometer chip manufacturing technology, at its first-ever Technology and Manufacturing Day. The company has -- frustratingly -- kept key details of this technology under wraps for years now, but Intel is now putting them out there for all to see.  Without further ado, let's look at what Intel had to tell us about this new tech. A large jump in density Let's talk performance Competitive comparison and no yield information Image source: Intel. Chipmakers generally like to reduce the area of its transistors with major new technology shifts. This area reduction is important in reducing transistor costs on a yield-normalized basis, a really important factor for product cost. Chipmakers are ultimately able to cram more features and functionality into a chip while maintaining reasonable cost structures. Intel says that in moving from 14 nanometers to 10, it's delivering an incre...

Linking hydrogen atom to silicon surface: A new way for greener, smaller and faster electronics

A key step in unlocking the potential for greener, faster, smaller electronic circuitry was taken recently by a group of researchers led by UAlberta physicist Robert Wolkow. The research team found a way to delete and replace out-of-place atoms that had been preventing new revolutionary circuitry designs from working. This unleashes a new kind of silicon chips for used in common electronic products, such as our phones and computers. "For the first time, we can unleash the powerful properties inherent to the atomic scale," explained Wolkow, noting that printing errors on silicon chips are inevitable when working at the atomic scale. "We were making things that were close to perfect but not quite there. Now that we have the ability to make corrections, we can ensure perfect patterns, and that makes the circuits work. It is this new ability to edit at the atom scale that makes all the difference." Think of a typing mistake and the ability to go back and white ...

Nanoimprinting accelerating the fabrication of nano-optical devices

Combining speed with incredible precision, a team of researchers has developed a way to print a nanoscale imaging probe onto the tip of a glass fiber as thin as a human hair, accelerating the production of the promising new device from several per month to several per day. The high-throughput fabrication technique opens the door for the widespread adoption of this and other nano-optical structures, which squeeze and manipulate light in ways that are unachievable by conventional optics. Nano-optics have the potential to be used for imaging, sensing, and spectroscopy, and could help scientists improve solar cells, design better drugs, and make faster semiconductors. A big obstacle to the technology's commercial use, however, is its time-consuming production process. The new fabrication method, called fiber nanoimprinting, could unplug this bottleneck. It was developed by scientists at the Molecular Foundry, located at the Department of Energy's Lawrence Berkeley Nat...