Skip to main content

Nanophotodetectors with nanocavities to improve the performance of optoelectronic devices.

In today's increasingly powerful electronics, tiny materials are a must as manufacturers seek to increase performance without adding bulk.
Smaller also is better for optoelectronic devices -- like camera sensors or solar cells -- which collect light and convert it to electrical energy. Think, for example, about reducing the size and weight of a series of solar panels, producing a higher-quality photo in low lighting conditions, or even transmitting data more quickly.
However, two major challenges have stood in the way: First, shrinking the size of conventionally used "amorphous" thin-film materials also reduces their quality. And second, when ultrathin materials become too thin, they become almost transparent and actually lose some ability to gather or absorb light.
Now, in a nanoscale photodetector that combines a unique fabrication method and light-trapping structures, a team of engineers from the University of Wisconsin-Madison and the University at Buffalo has overcome both of those obstacles.
The researchers -- electrical engineering professors Zhenqiang (Jack) Ma and Zongfu Yu at UW-Madison and Qiaoqiang Gan at UB -- described their device, a single-crystalline germanium nano-membrane photodetector on a nano-cavity substrate in the journal Science Advances.
"The idea, basically, is you want to use a very thin material to realize the same function of devices in which you need to use a very thick material," says Ma.
The device consists of nano-cavities sandwiched between a top layer of ultrathin single-crystal germanium and a reflecting layer of silver.
"Because of the nano-cavities, the photons are 'recycled' so light absorption is substantially increased -- even in very thin layers of material," says Ma.
Nano-cavities are made up of an orderly series of tiny, interconnected molecules that essentially reflect, or circulate, light. Gan already has shown that his nano-cavity structures increase the amount of light that thin semiconducting materials like germanium can absorb.
However, most germanium thin films begin as germanium in its amorphous form -- meaning the material's atomic arrangement lacks the regular, repeating order of a crystal. That also means its quality isn't sufficient for increasingly smaller optoelectronics applications.
That's where Ma's expertise comes into play. A world expert in semiconductor nano-membrane devices, Ma used a revolutionary membrane-transfer technology that allows him to easily integrate single crystalline semiconducting materials onto a substrate.
The result is a very thin, yet very effective, light-absorbing photodetector -- a building block for the future of optoelectronics.
"It is an enabling technology that allows you to look at a wide variety of optoelectronics that can go to even smaller footprints, smaller sizes," says Yu, who conducted computational analysis of the detectors.
While the researchers demonstrated their advance using a germanium semiconductor, they also can apply their method to other semiconductors.
"And importantly, by tuning the nano-cavity, we can control what wavelength we actually absorb," says Gan. "This will open the way to develop lots of different optoelectronic devices."
Journal Reference:

  1. Zhenyang Xia, Haomin Song, Munho Kim, Ming Zhou, Tzu-Hsuan Chang, Dong Liu, Xin Yin, Kanglin Xiong, Hongyi Mi, Xudong Wang, Fengnian Xia, Zongfu Yu, Zhenqiang (Jack) Ma, Qiaoqiang Gan. Single-crystalline germanium nanomembrane photodetectors on foreign nanocavitiesScience Advances, 2017; 3 (7): e1602783 DOI: 10.1126/sciadv.1602783

Comments

Popular posts from this blog

Linking hydrogen atom to silicon surface: A new way for greener, smaller and faster electronics

A key step in unlocking the potential for greener, faster, smaller electronic circuitry was taken recently by a group of researchers led by UAlberta physicist Robert Wolkow. The research team found a way to delete and replace out-of-place atoms that had been preventing new revolutionary circuitry designs from working. This unleashes a new kind of silicon chips for used in common electronic products, such as our phones and computers. "For the first time, we can unleash the powerful properties inherent to the atomic scale," explained Wolkow, noting that printing errors on silicon chips are inevitable when working at the atomic scale. "We were making things that were close to perfect but not quite there. Now that we have the ability to make corrections, we can ensure perfect patterns, and that makes the circuits work. It is this new ability to edit at the atom scale that makes all the difference." Think of a typing mistake and the ability to go back and white

Nanoimprinting accelerating the fabrication of nano-optical devices

Combining speed with incredible precision, a team of researchers has developed a way to print a nanoscale imaging probe onto the tip of a glass fiber as thin as a human hair, accelerating the production of the promising new device from several per month to several per day. The high-throughput fabrication technique opens the door for the widespread adoption of this and other nano-optical structures, which squeeze and manipulate light in ways that are unachievable by conventional optics. Nano-optics have the potential to be used for imaging, sensing, and spectroscopy, and could help scientists improve solar cells, design better drugs, and make faster semiconductors. A big obstacle to the technology's commercial use, however, is its time-consuming production process. The new fabrication method, called fiber nanoimprinting, could unplug this bottleneck. It was developed by scientists at the Molecular Foundry, located at the Department of Energy's Lawrence Berkeley Nat