Skip to main content

Spintronics in place of electronics : Future of IoT

Information technologies of the future will likely use electron spin -- rather than electron charge -- to carry information. But first, scientists need to better understand how to control spin and learn to build the spin equivalent of electronic components, from spin transistors, to spin gates and circuits.
Now, researchers have developed a technique to control and measure spin voltage, known as spin chemical potential. The technique, which uses atomic-sized defects in diamonds to measure chemical potential, is essentially a nanoscale spin multimeter that allows measurements in chip-scale devices.
The research is published in Science.
"There is growing interest in insulating materials that can conduct spin," said Amir Yacoby, Professor of Physics in the Department of Physics and of Applied Physics at Harvard John A. Paulson School of Engineering and Applied Sciences and senior author of the paper. "Our work develops a new way to look at these spins in materials such as magnets."
In conducting materials, electrons can carry information by moving from point A to point B. This is an electric current. Spin, on the other hand, can propagate through insulating materials in waves -- each electron standing still and communicating spin to its coupled neighbor, like a quantum game of telephone.
To drive these waves from point A to point B, the researchers needed to develop a technique to increase the spin chemical potential -- spin voltage -- at a local level.
"If you have a high chemical potential at location A and a low chemical potential at location B, spin waves start diffusing from A to B," said Chunhui Du, a postdoctoral fellow at the Department of Physics and co-first author of the paper. "This is a very important concept in spintronics, because if you are able to control spin-wave transport, then you can use these spin waves instead of electrical current as carriers of information."
The researchers used two spin-wave injection methods: in the first, they applied fast-oscillating, microwave magnetic fields to excite spin waves. In the second, they converted an electrical current into spin waves using a platinum metal strip located at one end of the magnet.
"What's remarkable is that this material is an insulator; it doesn't conduct any current and still you can send information in the form of spin waves through it," said Toeno Van der Sar, a postdoctoral fellow at the Department of Physics and co-first author of the paper. "Spin waves are so promising because they can travel for a long time without decaying, and there is barely any heat produced because you don't have moving electrons."
Once the team injected spin waves into the material, the next step was to figure out how to measure information about those waves. The researchers turned to nitrogen-vacancy (NV) defects in diamonds. These defects -- in which one carbon atom in a diamond is replaced with a nitrogen atom and a neighboring atom is removed -- can be used to detect minute magnetic fields.
The researchers fabricated tiny rods of diamond containing NV centers and placed them nanometers above the sample. As the spin waves move through the material, they generate a magnetic field, which is picked up by the NV center.
Based on NV-center measurements, researchers can now figure out the spin chemical potential, the number of spin waves, how they are moving through the material and other important insights.
"The nice thing about this technique is that it's very local," said Van der Sar. "You can do these measurements just a few nanometers above the sample, which means that you can spatially study the chemical potential in a chip-scale spin-wave device, for, let's say, a spin-wave computer. This is not possible with some of the other state-of-the-art techniques."
This system could also offer a glimpse into more exotic physics such as the spin-wave Hall effect, or show that spin-wave transport is hydrodynamic.
"The principle we use to control and measure the spin chemical potential is quite general. It opens ways to study more exotic spin phenomena in novel materials and aids the development of new spintronic devices," said Du.
Journal Reference:
  1. Chunhui Du et al. Control and local measurement of the spin chemical potential in a magnetic insulatorScience, July 2017 DOI: 10.1126/science.aak9611



Comments

Popular posts from this blog

Linking hydrogen atom to silicon surface: A new way for greener, smaller and faster electronics

A key step in unlocking the potential for greener, faster, smaller electronic circuitry was taken recently by a group of researchers led by UAlberta physicist Robert Wolkow. The research team found a way to delete and replace out-of-place atoms that had been preventing new revolutionary circuitry designs from working. This unleashes a new kind of silicon chips for used in common electronic products, such as our phones and computers. "For the first time, we can unleash the powerful properties inherent to the atomic scale," explained Wolkow, noting that printing errors on silicon chips are inevitable when working at the atomic scale. "We were making things that were close to perfect but not quite there. Now that we have the ability to make corrections, we can ensure perfect patterns, and that makes the circuits work. It is this new ability to edit at the atom scale that makes all the difference." Think of a typing mistake and the ability to go back and white

Nanophotodetectors with nanocavities to improve the performance of optoelectronic devices.

In today's increasingly powerful electronics, tiny materials are a must as manufacturers seek to increase performance without adding bulk. Smaller also is better for optoelectronic devices -- like camera sensors or solar cells -- which collect light and convert it to electrical energy. Think, for example, about reducing the size and weight of a series of solar panels, producing a higher-quality photo in low lighting conditions, or even transmitting data more quickly. However, two major challenges have stood in the way: First, shrinking the size of conventionally used "amorphous" thin-film materials also reduces their quality. And second, when ultrathin materials become too thin, they become almost transparent and actually lose some ability to gather or absorb light. Now, in a nanoscale photodetector that combines a unique fabrication method and light-trapping structures, a team of engineers from the University of Wisconsin-Madison and the University at Buffalo ha

Nanoimprinting accelerating the fabrication of nano-optical devices

Combining speed with incredible precision, a team of researchers has developed a way to print a nanoscale imaging probe onto the tip of a glass fiber as thin as a human hair, accelerating the production of the promising new device from several per month to several per day. The high-throughput fabrication technique opens the door for the widespread adoption of this and other nano-optical structures, which squeeze and manipulate light in ways that are unachievable by conventional optics. Nano-optics have the potential to be used for imaging, sensing, and spectroscopy, and could help scientists improve solar cells, design better drugs, and make faster semiconductors. A big obstacle to the technology's commercial use, however, is its time-consuming production process. The new fabrication method, called fiber nanoimprinting, could unplug this bottleneck. It was developed by scientists at the Molecular Foundry, located at the Department of Energy's Lawrence Berkeley Nat