Skip to main content

Posts

Showing posts from June, 2017

Topological insulators(TI): A new revolution to faster electronics

 State University report they have created a TI film just 25 atoms thick that adheres to an insulating magnetic film, creating a "heterostructure." This heterostructure makes TI surfaces magnetic at room temperatures and higher, to above 400 Kelvin or more than 720 degrees Fahrenheit. The surfaces of TI are only a few atoms thick and need little power to conduct electricity. If TI surfaces are made magnetic, current only flows along the edges of the devices, requiring even less energy. Thanks to this so-called quantum anomalous Hall effect, or QAHE, a TI device could be tiny and its batteries long lasting, Shi said. Engineers love QAHE because it makes devices very robust, that is, hearty enough to stand up against defects or errors, so that a faulty application, for instance, doesn't crash an entire operating system. Topological insulators are the only materials right now that can achieve the coveted QAHE, but only after they are magnetized, and therein lies the ...

Nanorods enables communication through Li-Fi

Ever since the 2015  Consumer Electronics Show ,  quantum dots  have been in a market struggle to displace light-emitting diodes (LEDs) as a backlight source for liquid crystal displays (LCDs). Now an advance by a team of researchers from the University of Illinois at Urbana–Champaign, the Electronics and Telecommunications Research Institute in South Korea, and Dow Chemical may turn the display market on its head by eliminating the need for backlights in LCD devices. They have  produced a LED pixel out of nanorods capable of both emitting and detecting light . In the video below, you can get a further description of how the nanorods manage to both detect and emit light as well as some pretty attractive future applications, like mobile phones that can “see” without the need of a camera lens or communicate with each other using Light Fidelity (Li-Fi) Technology  Its different from the use of quantum dots as backlight,” explained Moonsub Shim, a ...

Nanoantennas could scale down photonic circuits

In a major breakthrough for optoelectronics, researchers at Columbia University have made the smallest yet integrated photonic circuit. In the process, they have managed to attain a high level of performance over a broad wavelength range, something not previously achieved. The researchers believe their discovery is equivalent to replacing vacuum tubes in computers with semiconductor transistors—something with the potential to completely transform optical communications and optical signal processing. The research community has been feverishly trying to build i ntegrated photonic circuits  that can be shrunk to the size of integrated circuits (ICs) used in computer chips. But there’s a big problem: When you use wavelengths of light instead of electrons to transmit information, you simply can’t compress the wavelengths enough to work in these smaller chip-scale dimensions. In research described in the journal  Nature Nanotechnology , the integrated ...

Increasing speed of optical fibers

Three decades of steady increases in fiber-optic transmission capacity have powered the growth of the Internet and information-based technology. But  sustaining that growth has required increasingly complex and costly new technology . Now, a new experiment has shown that an elegant bit of laser physics called a  frequency comb—which earned Theodor Hänsch and John Hall the 2005 Nobel Prize in Physics —could come to the rescue by greatly improving optical transmitters.  x A pair of silicon-nitride microresonator frequency combs to transmit 50 terabits of data through 75 kilometers of single-mode fiber using 179 separate carrier wavelengths. They also showed that microresonator frequency combs could serve as local oscillators in receivers, which could improve transmission quality, and lead to petabit-per-second (1000 terabit) data rates inside data centers. The German and Swiss researchers’ transmission scheme is similar to many of today's fiber-optic netwo...

Revolution in quantum devices through magnetic switch

A research team has developed the first switch that turns on and off a quantum behavior called the Berry phase. The discovery promises to provide new insight into the fundamentals of quantum theory and may lead to new quantum electronic devices. When a ballerina pirouettes, twirling a full revolution, she looks just as she did when she started. But for electrons and other subatomic particles, which follow the rules of quantum theory, that's not necessarily so. When an electron moves around a closed path, ending up where it began, its physical state may or may not be the same as when it left. Now, there is a way to control the outcome, thanks to an international research group led by scientists at the National Institute of Standards and Technology (NIST). The team has developed the first switch that turns on and off this mysterious quantum behavior. The discovery promises to provide new insight into the fundamentals of quantum theory and may lead to new quantum electronic device...

Simulations made easier for defects in solar nanostructures

To understand the nature of something extremely complex, you often have to study its smallest parts. In trying to decipher the universe, for example, we search for gravitational waves or faint waves of light from the Big Bang. And to comprehend the very essence of matter itself, we break it down to the subatomic level and use computer simulations to study particles like quarks and gluons. Understanding materials with specific functions, such as those used in solar cells, and engineering ways to improve their properties pose many of the same challenges. In the ongoing effort to improve solar cell energy conversion efficiencies, researchers have begun digging deeper -- in some cases to the atomic level -- to identify material defects that can undermine the conversion process. For example, heterogeneous nanostructured materials are widely used in a variety of optoelectronic devices, including solar cells. However, due to their heterogeneous nature, these materials contain nanoscale...

Comunication at nanoscale

Two-way molecular communication, analogous to the chemical signalling used by plants and animals to control their bodies and communicate with other organisms, has been demonstrated between inorganic nanoparticles by researchers in Spain. The research is a step towards producing co-operative nanoparticles, which could be useful in multiple areas of science and medicine. From the invention of the telegraph to Web 2.0, humans have communicated using electromagnetic waves. This can be problematic at the nanoscale, as the technology needed cannot be miniaturised below the wavelength and the power requirements are prohibitive. Nature cracked this problem billions of years ago: organisms can send messages to other parts of their bodies using hormones and other chemical messengers. Humans have produced simple synthetic versions of this kind of molecular logic for controlled drug release and other applications, but the sophisticated multi-way chemical communication seen in nature has not b...

Amazing quantum world

Simulating the behavior of a single particle can be quite a challenging task in physics; after all, it is microscopic and we usually cannot watch in real time. It becomes even more complicated when you realize that the particle has to follow the laws of quantum physics, which allow it be in two or more places at the same time through a phenomenon called superposition. Understanding how a quantum particle behaves is necessary to enhance our fundamental understanding of the laws of physics. Dr. C. M. Chandrashekar, a post-doctoral researcher in Professor Thomas Busch's Quantum Systems Unit at the Okinawa Institute of Science and Technology Graduate University, is running simulations and carrying out analytical studies to understand how single quantum particles travel. The first step to simulating quantum physics is to find the very basic rules that govern the motion of the quantum particle and then add complexity step by step. In Dr. Chandrashekar's work, a particle is trave...

Graphene from soyabean oil in just one step

Until now, the high cost of graphene production has been the major roadblock in its commercialiZation.  Previously, graphene was grown in a highly-controlled environment with explosive compressed gases, requiring long hours of operation at high temperatures and extensive vacuum processing. Australian CSIRO scientists have developed a novel “GraphAir” technology which eliminates the need for such a highly-controlled environment. The technology grows graphene film in ambient air with a natural precursor, making its production faster and simpler. “This ambient-air process for graphene fabrication is fast, simple, safe, potentially scalable, and integration-friendly,” CSIRO scientist Dr Zhao Jun Han, co-author of the paper published today in Nature Communications said. “Our unique technology is expected to reduce the cost of graphene production and improve the uptake in new applications.” GraphAir transforms soybean oil – a renewable, natural material – into graphene fil...

Nanoantennas : The Future of Communication technology

More than 120 years after the discovery of the electromagnetic character of radiowaves by Heinrich Hertz, wireless data transmission dominates information technology. Higher and higher radio frequencies are applied to transmit more data. Some years ago, scientists found that light waves might also be used for radio transmission. So far, manufacture of the small antennas has required an enormous expenditure. Scientists have now succeeded in specifically and reproducibly manufacturing smallest optical nanoantennas from gold.In 1887, Heinrich Hertz discovered the electromagnetic waves at the former Technical College of Karlsruhe, the predecessor of Universität Karlsruhe (TH). Specific and directed generation of electromagnetic radiation allows for the transmission of information from a place A to a remote location B. The key component in this transmission is a dipole antenna on the transmission side and on the reception side. Today, this technology is applied in many areas of everyday l...

Intel's upcoming 10-nanometer chip manufacturing technology

At long last, chip giant  Intel  (NASDAQ: INTC) opened up about its upcoming 10-nanometer chip manufacturing technology, at its first-ever Technology and Manufacturing Day. The company has -- frustratingly -- kept key details of this technology under wraps for years now, but Intel is now putting them out there for all to see.  Without further ado, let's look at what Intel had to tell us about this new tech. A large jump in density Let's talk performance Competitive comparison and no yield information Image source: Intel. Chipmakers generally like to reduce the area of its transistors with major new technology shifts. This area reduction is important in reducing transistor costs on a yield-normalized basis, a really important factor for product cost. Chipmakers are ultimately able to cram more features and functionality into a chip while maintaining reasonable cost structures. Intel says that in moving from 14 nanometers to 10, it's delivering an incre...

Optical Determination of Crystal Phase in Semiconductor Nanocrystals

Nanocrystals have diverse applications spanning biomedical imaging, light-emitting devices, and consumer electronics. Their unique optical properties result from the type of crystal from which they are composed. However, a major bottleneck in the development of nanocrystals, to date, is the need for X-ray techniques to determine the crystal type. Researchers at the University of Illinois at Urbana-Champaign have developed a novel way to determine crystal type based on optics -- by identifying the unique ways in which these crystals absorb light. "This new ability eliminates the need for slow and expensive X-ray equipment, as well as the need for large quantities of materials that must be extensively purified," explained Andrew M. Smith, an assistant professor of bioengineering and principle investigator for the project. "These theoretical and experimental insights provide simple and accurate analysis for liquid-dispersed nanomaterials that we think can improve the ...