Skip to main content

Increasing speed of optical fibers

A pair of silicon-nitride microresonator frequency combs to transmit 50 terabits of data through 75 kilometers of single-mode fiber using 179 separate carrier wavelengths. They also showed that microresonator frequency combs could serve as local oscillators in receivers, which could improve transmission quality, and lead to petabit-per-second (1000 terabit) data rates inside data centers.
The German and Swiss researchers’ transmission scheme is similar to many of today's fiber-optic networks in that it uses wavelength-division multiplexing, wherein light signals are sent at many separate wavelengths through the same glass fiber. But theretofore, that called for a separate high-precision laser for each of some 100 wavelengths, each transmitting at about 100 gigabits per second. That adds up to an impressive 10 terabits per fiber core, but requires a complex system to keep the separate lasers at the proper frequency spacing.
The experimental frequency comb source described in the Nature paper is based on a monolithic microresonator chip linked to a planar waveguide. It generated 179 separate signals, phase-locked to each other at uniform frequency intervals. It also has other attractions, said Christian Koos, a Karlsruhe researcher who coauthored the paper, in an email. “Wavelength control is much simpler, since only two parameters, center wavelength and line spacing, must be adjusted. The lines have narrow bandwidth, and power consumption can be lower than with arrays of lasers.”   
A frequency comb turns the output of a single pump laser into dozens or hundreds of wavelengths by locking the modes oscillating in the pump laser together so it emits a series of short, intense pulses spaced equally in time. Viewed in the frequency domain, that series of light pulses becomes a series of evenly spaced narrow frequency bands – just what's needed for simplified wavelength-division multiplexing.
The first frequency combs, produced in the 1990s, required costly, complex and delicate lasers producing pulses lasting less than a trillionth of a second. But 10 years ago, Tobias Kippenberg of the Swiss Federal Institute of Technology in Lausanne produced a frequency comb by passing laser light through a monolithic microresonator linked to a waveguide. Since then, microresonator frequency combs have become such sensitive measurement tools that they can measure the motion of exoplanets, Alex Gaeta of Columbia University said last month at the Conference on Lasers and Electro-Optics.
Microresonators had been tested for fiber-optic communications, but had not approached the data rates of systems using many discrete lasers. Now Kippenberg has teamed with Koos to test a new design that generates special pulses called solitons in the microresonator. First observed in canals in the 1830s, solitons or solitary waves maintain their shape as they travel because nonlinear effects that might shrink the waves offset dispersion that might spread them. Soliton mode locking is crucial to ensure stability of each comb line [and] precise frequency spacing of the comb, and to allow for for stable coherent detection of the phases at the receiver end,” Gaeta wrote in an email. “In principle, such a system will be able to be fully integrated on a chip, which will provide energy savings and robustness.”
Source
http://spectrum.ieee.org/tech-talk/semiconductors/optoelectronics/researchers-devise-nobel-approach-to-faster-fibers

Comments

Popular posts from this blog

Intel's upcoming 10-nanometer chip manufacturing technology

At long last, chip giant  Intel  (NASDAQ: INTC) opened up about its upcoming 10-nanometer chip manufacturing technology, at its first-ever Technology and Manufacturing Day. The company has -- frustratingly -- kept key details of this technology under wraps for years now, but Intel is now putting them out there for all to see.  Without further ado, let's look at what Intel had to tell us about this new tech. A large jump in density Let's talk performance Competitive comparison and no yield information Image source: Intel. Chipmakers generally like to reduce the area of its transistors with major new technology shifts. This area reduction is important in reducing transistor costs on a yield-normalized basis, a really important factor for product cost. Chipmakers are ultimately able to cram more features and functionality into a chip while maintaining reasonable cost structures. Intel says that in moving from 14 nanometers to 10, it's delivering an incre...

Nano thin film Barium Stannate :New revolution to electronics and solar industry

A team of researchers, led by the University of Minnesota, have discovered a new nano-scale thin film material with the highest-ever conductivity in its class. The new material could lead to smaller, faster, and more powerful electronics, as well as more efficient solar cells. The discovery is being published today in  Nature Communications , an open access journal that publishes high-quality research from all areas of the natural sciences. Researchers say that what makes this new material so unique is that it has a high conductivity, which helps electronics conduct more electricity and become more powerful. But the material also has a wide bandgap, which means light can easily pass through the material making it optically transparent. In most cases, materials with wide bandgap, usually have either low conductivity or poor transparency. "The high conductivity and wide bandgap make this an ideal material for making optically transparent conducting films which could be used...

Nanoantennas could scale down photonic circuits

In a major breakthrough for optoelectronics, researchers at Columbia University have made the smallest yet integrated photonic circuit. In the process, they have managed to attain a high level of performance over a broad wavelength range, something not previously achieved. The researchers believe their discovery is equivalent to replacing vacuum tubes in computers with semiconductor transistors—something with the potential to completely transform optical communications and optical signal processing. The research community has been feverishly trying to build i ntegrated photonic circuits  that can be shrunk to the size of integrated circuits (ICs) used in computer chips. But there’s a big problem: When you use wavelengths of light instead of electrons to transmit information, you simply can’t compress the wavelengths enough to work in these smaller chip-scale dimensions. In research described in the journal  Nature Nanotechnology , the integrated ...