Skip to main content

Natural sunscreen through synthetic version of melanin nanoparticle

Chemists, materials scientists and nanoengineers at UC San Diego have created what may be the ultimate natural sunscreen.
In a paper published in the American Chemical Society journalACS Central Science, they report the development of nanoparticles that mimic the behavior of natural melanosomes, melanin-producing cell structures that protect our skin, eyes and other tissues from the harmful effects of ultraviolet radiation.
"Basically, we succeeded in making a synthetic version of the nanoparticles that our skin uses to produce and store melanin and demonstrated in experiments in skin cells that they mimic the behavior of natural melanosomes," said Nathan Gianneschi, a professor of chemistry and biochemistry, materials science and engineering and nanoengineering at UC San Diego, who headed the team of researchers. The achievement has practical applications.
"Defects in melanin production in humans can cause diseases such as vitiligo and albinism that lack effective treatments," Gianneschi added.
Vitiligo develops when the immune system wrongly attempts to clear normal melanocytes from the skin, effectively stopping the production of melanocytes. Albinism is due to genetic defects that lead to either the absence or a chemical defect in tyrosinase, a copper-containing enzyme involved in the production of melanin. Both of these diseases lack effective treatments and result in a significant risk of skin cancer for patients.
"The widespread prevalence of these melanin-related diseases and an increasing interest in the performance of various polymeric materials related to melanin prompted us to look for novel synthetic routes for preparing melanin-like materials," Gianneschi said. Melanin particles are produced naturally in many different sizes and shapes by animals -- for iridescent feathers in birds or the pigmented eyes and skin of some reptiles. But scientists have discovered that extracting melanins from natural sources is a difficult and potentially more complex process than producing them synthetically.
Gianneschi and his team discovered two years ago that synthetic melanin-like nanoparticles could be developed in a precisely controllable manner to mimic the performance of natural melanins used in bird feathers.
"We hypothesized that synthetic melanin-like nanoparticles would mimic naturally occurring melanosomes and be taken up by keratinocytes, the predominant cell type found in the epidermis, the outer layer of skin," said Gianneschi.
In healthy humans, melanin is delivered to keratinocytes in the skin after being excreted as melanosomes from melanocytes. The UC San Diego scientists prepared melanin-like nanoparticles through the spontaneous oxidation of dopamine -- developing biocompatible, synthetic analogues of naturally occurring melanosomes. Then they studied their update, transport, distribution and ultraviolet radiation-protective capabilities in human keratinocytes in tissue culture.
The researchers found that these synthetic nanoparticles were not only taken up and distributed normally, like natural melanosomes, within the keratinocytes, they protected the skin cells from DNA damage due to ultraviolet radiation.
"Considering limitations in the treatment of melanin-defective related diseases and the biocompatibility of these synthetic melanin-like nanoparticles in terms of uptake and degradation, these systems have potential as artificial melanosomes for the development of novel therapies, possibly supplementing the biological functions of natural melanins," the researchers said in their paper.

Source:

University of California - San Diego. "Chemists create the ultimate natural sunscreen." ScienceDaily. ScienceDaily, 17 May 2017. .

Comments

Popular posts from this blog

Nanoimprinting accelerating the fabrication of nano-optical devices

Combining speed with incredible precision, a team of researchers has developed a way to print a nanoscale imaging probe onto the tip of a glass fiber as thin as a human hair, accelerating the production of the promising new device from several per month to several per day. The high-throughput fabrication technique opens the door for the widespread adoption of this and other nano-optical structures, which squeeze and manipulate light in ways that are unachievable by conventional optics. Nano-optics have the potential to be used for imaging, sensing, and spectroscopy, and could help scientists improve solar cells, design better drugs, and make faster semiconductors. A big obstacle to the technology's commercial use, however, is its time-consuming production process. The new fabrication method, called fiber nanoimprinting, could unplug this bottleneck. It was developed by scientists at the Molecular Foundry, located at the Department of Energy's Lawrence Berkeley Nat

Hybrid graphene and CNT anode battery

Rice University scientists have created a rechargeable lithium metal battery with three times the capacity of commercial lithium-ion batteries by resolving something that has long stumped researchers: the dendrite problem. The Rice battery stores lithium in a unique anode, a seamless hybrid of graphene and carbon nanotubes. The material first created at Rice in 2012 is essentially a three-dimensional carbon surface that provides abundant area for lithium to inhabit. The anode itself approaches the theoretical maximum for storage of lithium metal while resisting the formation of damaging dendrites or "mossy" deposits. Dendrites have bedeviled attempts to replace lithium-ion with advanced lithium metal batteries that last longer and charge faster. Dendrites are lithium deposits that grow into the battery's electrolyte. If they bridge the anode and cathode and create a short circuit, the battery may fail, catch fire or even explode. Rice researchers led by chemist

2D FET from polymorphic material molbdenum telluride

In simple terms, FETs can be thought as high-speed switches, composed of two metal electrodes and a semiconducting channel in between. Electrons (or holes) move from the source electrode to the drain electrode, flowing through the channel. While 3D FETs have been scaled down to nanoscale dimensions successfully, their physical limitations are starting to emerge. Short semiconductor channel lengths lead to a decrease in performance: some electrons (or holes) are able to flow between the electrodes even when they should not, causing heat and efficiency reduction. To overcome this performance degradation, transistor channels have to be made with nanometer-scale thin materials. However, even thin 3D materials are not good enough, as unpaired electrons, part of the so-called "dangling bonds" at the surface interfere with the flowing electrons, leading to scattering. Passing from thin 3D FETs to 2D FETs can overcome these problems and bring in new attractive properties. &quo