Skip to main content

Comunication at nanoscale

Two-way molecular communication, analogous to the chemical signalling used by plants and animals to control their bodies and communicate with other organisms, has been demonstrated between inorganic nanoparticles by researchers in Spain. The research is a step towards producing co-operative nanoparticles, which could be useful in multiple areas of science and medicine.
From the invention of the telegraph to Web 2.0, humans have communicated using electromagnetic waves. This can be problematic at the nanoscale, as the technology needed cannot be miniaturised below the wavelength and the power requirements are prohibitive. Nature cracked this problem billions of years ago: organisms can send messages to other parts of their bodies using hormones and other chemical messengers. Humans have produced simple synthetic versions of this kind of molecular logic for controlled drug release and other applications, but the sophisticated multi-way chemical communication seen in nature has not been seen.
Molecular diagram of how the nanoparticles communicate with each other
Source: Springer Nature
The two nanoparticles can communicate with each other using chemical messages
Ramón Martínez-Máñez and colleagues at the University of Valencia and Polytechnic University of Valencia, together with researchers at the Complutense University of Madrid, dispersed two types of nanoparticles, called S1gal and S2gox, in water. When lactose is added to the solution, an enzyme on S1gal hydrolyses it into galactose and glucose. The glucose is hydrolysed to gluconic acid by glucose oxidase on the S2gox. The resulting drop in pH opens a supramolecular nanovalve on S2gox, releasing N-acetyl-L-cysteine. This, in turn, ruptures disulfide linkages on S1gal, releasing a dye. Effectively, S1galsignals the presence of lactose to S2gox, which responds by signalling to S1gal to release the dye. ‘We are attempting to design more complex communication systems,’ says Martínez-Máñez. ‘We are also interested in coupling communication with movement. If nanoparticles can communicate they can behave co-operatively and mimic complex biological behaviors.’
Massimilano Pierobon of the University of Nebraska in the US agrees the paper is ‘very interesting’ and ‘can be the first brick to build up more complex systems’, although he says the idea that the system is a communication channel is ‘a bit of a stretch’ as the system cannot be reset and used to send further information. He also notes that ’many natural and programmable synthetic circuits have been demonstrated using DNA’. Sasitharan Balasubramaniam of the Waterford Institute of Technology in Ireland, however, sees a potential application in inorganic nano-robots. ‘To get them to communicate organically would be tough because the setup is all based on inorganic materials,’ he explains. ‘I can see the work could be integrated into these little nano-machines to allow them to communicate. It’s a very nice article.’

Comments

Popular posts from this blog

Intel's upcoming 10-nanometer chip manufacturing technology

At long last, chip giant  Intel  (NASDAQ: INTC) opened up about its upcoming 10-nanometer chip manufacturing technology, at its first-ever Technology and Manufacturing Day. The company has -- frustratingly -- kept key details of this technology under wraps for years now, but Intel is now putting them out there for all to see.  Without further ado, let's look at what Intel had to tell us about this new tech. A large jump in density Let's talk performance Competitive comparison and no yield information Image source: Intel. Chipmakers generally like to reduce the area of its transistors with major new technology shifts. This area reduction is important in reducing transistor costs on a yield-normalized basis, a really important factor for product cost. Chipmakers are ultimately able to cram more features and functionality into a chip while maintaining reasonable cost structures. Intel says that in moving from 14 nanometers to 10, it's delivering an incre...

Nano thin film Barium Stannate :New revolution to electronics and solar industry

A team of researchers, led by the University of Minnesota, have discovered a new nano-scale thin film material with the highest-ever conductivity in its class. The new material could lead to smaller, faster, and more powerful electronics, as well as more efficient solar cells. The discovery is being published today in  Nature Communications , an open access journal that publishes high-quality research from all areas of the natural sciences. Researchers say that what makes this new material so unique is that it has a high conductivity, which helps electronics conduct more electricity and become more powerful. But the material also has a wide bandgap, which means light can easily pass through the material making it optically transparent. In most cases, materials with wide bandgap, usually have either low conductivity or poor transparency. "The high conductivity and wide bandgap make this an ideal material for making optically transparent conducting films which could be used...

Nano Thermal Mechanical Rectification : A New way to harness heat to power computer

One of the biggest problems with computers, dating to the invention of the first one, has been finding ways to keep them cool so that they don't overheat or shut down . Instead of combating the heat, two University of Nebraska-Lincoln engineers have embraced it as an alternative energy source that would allow computing at ultra-high temperatures. Sidy Ndao, assistant professor of mechanical and materials engineering, said his research group's development of a nano-thermal-mechanical device, or thermal diode, came after flipping around the question of how to better cool computers. "If you think about it, whatever you do with electricity you should (also) be able to do with heat, because they are similar in many ways," Ndao said. "In principle, they are both energy carriers. If you could control heat, you could use it to do computing and avoid the problem of overheating." A paper Ndao co-authored with Mahmoud Elzouka, a graduate student in mechanica...