Skip to main content

Topological insulators(TI): A new revolution to faster electronics

 State University report they have created a TI film just 25 atoms thick that adheres to an insulating magnetic film, creating a "heterostructure." This heterostructure makes TI surfaces magnetic at room temperatures and higher, to above 400 Kelvin or more than 720 degrees Fahrenheit.
The surfaces of TI are only a few atoms thick and need little power to conduct electricity. If TI surfaces are made magnetic, current only flows along the edges of the devices, requiring even less energy. Thanks to this so-called quantum anomalous Hall effect, or QAHE, a TI device could be tiny and its batteries long lasting, Shi said.
Engineers love QAHE because it makes devices very robust, that is, hearty enough to stand up against defects or errors, so that a faulty application, for instance, doesn't crash an entire operating system.
Topological insulators are the only materials right now that can achieve the coveted QAHE, but only after they are magnetized, and therein lies the problem: TI surfaces aren't naturally magnetic.
Scientists have been able to achieve magnetism in TI by doping, i.e. introducing magnetic impurities to the material, which also made it less stable, Shi said. The doping allowed TI surfaces to demonstrate QAHE, but only at extremely low temperatures -- a few hundredths of a degree in Kelvin above absolute zero, or about 459 degrees below zero Fahrenheit -- not exactly conducive to wide popular use.
Source
  1. Chi Tang, Cui-Zu Chang, Gejian Zhao, Yawen Liu, Zilong Jiang, Chao-Xing Liu, Martha R. Mccartney, David J. Smith, Tingyong Chen, Jagadeesh S. Moodera, and Jing Shi. Above 400-K robust perpendicular ferromagnetic phase in a topological insulatorScience Advances, 23 Jun 2017 DOI: 10.1126/sciadv.1700307

Comments

Popular posts from this blog

Intel's upcoming 10-nanometer chip manufacturing technology

At long last, chip giant  Intel  (NASDAQ: INTC) opened up about its upcoming 10-nanometer chip manufacturing technology, at its first-ever Technology and Manufacturing Day. The company has -- frustratingly -- kept key details of this technology under wraps for years now, but Intel is now putting them out there for all to see.  Without further ado, let's look at what Intel had to tell us about this new tech. A large jump in density Let's talk performance Competitive comparison and no yield information Image source: Intel. Chipmakers generally like to reduce the area of its transistors with major new technology shifts. This area reduction is important in reducing transistor costs on a yield-normalized basis, a really important factor for product cost. Chipmakers are ultimately able to cram more features and functionality into a chip while maintaining reasonable cost structures. Intel says that in moving from 14 nanometers to 10, it's delivering an incre...

Nano thin film Barium Stannate :New revolution to electronics and solar industry

A team of researchers, led by the University of Minnesota, have discovered a new nano-scale thin film material with the highest-ever conductivity in its class. The new material could lead to smaller, faster, and more powerful electronics, as well as more efficient solar cells. The discovery is being published today in  Nature Communications , an open access journal that publishes high-quality research from all areas of the natural sciences. Researchers say that what makes this new material so unique is that it has a high conductivity, which helps electronics conduct more electricity and become more powerful. But the material also has a wide bandgap, which means light can easily pass through the material making it optically transparent. In most cases, materials with wide bandgap, usually have either low conductivity or poor transparency. "The high conductivity and wide bandgap make this an ideal material for making optically transparent conducting films which could be used...

Nanoantennas could scale down photonic circuits

In a major breakthrough for optoelectronics, researchers at Columbia University have made the smallest yet integrated photonic circuit. In the process, they have managed to attain a high level of performance over a broad wavelength range, something not previously achieved. The researchers believe their discovery is equivalent to replacing vacuum tubes in computers with semiconductor transistors—something with the potential to completely transform optical communications and optical signal processing. The research community has been feverishly trying to build i ntegrated photonic circuits  that can be shrunk to the size of integrated circuits (ICs) used in computer chips. But there’s a big problem: When you use wavelengths of light instead of electrons to transmit information, you simply can’t compress the wavelengths enough to work in these smaller chip-scale dimensions. In research described in the journal  Nature Nanotechnology , the integrated ...