Skip to main content

Transition metal dichalcogenides (TMDs): a new revolution to quantum technologies

Transition metal dichalcogenides (TMDs) are layered semiconductors that can be exfoliated into layers only a few atoms thick. Recent research has shown that some TMDs can contain quantum light sources that can emit single photons of light. Until now, the occurrence of these quantum light emitters has been random. Now, researchers in the Graphene Flagship working at the University of Cambridge, UK, have created large scale arrays of these quantum emitters in different TMD materials. The work, also involving researchers from Harvard University, US, is published in Nature Communications. This new approach leads to large quantities of on-demand, single photon emitters, paving the way for integrating ultra-thin, single photons in electronic devices.
Quantum light emitters, or quantum dots, are of interest for many different applications, including quantum communication and networks. Until now, it has been very difficult to produce large arrays of quantum emitters close together while keeping the high quality of the quantum light sources. "It's almost a Goldilocks problem -- it seems like one either obtains good single photon sources, or good arrays but not both at the same time. Now, all of a sudden, we can have hundreds of these emitters in one sample," said Mete Atatüre, a professor at the Cavendish Laboratory of the University of Cambridge.
The random occurrences of quantum dots in TMD made systematic investigation difficult. "The ability to deterministically create our sources has made a dramatic change in the way we do our day-to-day research. Previously it was pure luck, and we had to keep our spirits high even if we didn't succeed. Now, we can do research in a more systematic way," said Atatüre. Not only does this new method make performing research more straightforward, but it also leads to improvements in the emitters themselves: "The quality of the emitters that we create on purpose seems to be better than the natural quantum dots."
Dhiren Kara, a researcher at the Cavendish Laboratory, said "There is lots of mystery surrounding these emitters, in how they originate and how they work. Now, one can directly create the emitters and not have to worry about waiting for them to appear randomly. In that sense, it speeds up a lot of the science."
To create the quantum light sources, the researchers cut an array of nanoscale pillars into silica or nanodiamond, and then suspended the few-atom-thick TMD layer on top of the pillars. The quantum emitters are then created in the TMD where it is supported by the pillars, so it is possible to choose exactly where the single photons should be generated. "The fact that the emitters are generated in a mechanical way is good, because it means that they are quite robust, and material independent," said Carmen Palacios-Berraquero, a researcher at the Cavendish Laboratory and first author of the work.
The deterministic and robust generation of quantum sources means new opportunities for hybrid structures of photonic and electronic functions layered together. The quantum arrays are fully scalable and compatible with silicon chip fabrication.
Journal Reference:
  1. Carmen Palacios-Berraquero, Dhiren M. Kara, Alejandro R.-P. Montblanch, Matteo Barbone, Pawel Latawiec, Duhee Yoon, Anna K. Ott, Marko Loncar, Andrea C. Ferrari, Mete Atatüre. Large-scale quantum-emitter arrays in atomically thin semiconductorsNature Communications, 2017; 8: 15093 DOI: 10.1038/NCOMMS15093

Comments

Popular posts from this blog

Intel's upcoming 10-nanometer chip manufacturing technology

At long last, chip giant  Intel  (NASDAQ: INTC) opened up about its upcoming 10-nanometer chip manufacturing technology, at its first-ever Technology and Manufacturing Day. The company has -- frustratingly -- kept key details of this technology under wraps for years now, but Intel is now putting them out there for all to see.  Without further ado, let's look at what Intel had to tell us about this new tech. A large jump in density Let's talk performance Competitive comparison and no yield information Image source: Intel. Chipmakers generally like to reduce the area of its transistors with major new technology shifts. This area reduction is important in reducing transistor costs on a yield-normalized basis, a really important factor for product cost. Chipmakers are ultimately able to cram more features and functionality into a chip while maintaining reasonable cost structures. Intel says that in moving from 14 nanometers to 10, it's delivering an incre...

Nano thin film Barium Stannate :New revolution to electronics and solar industry

A team of researchers, led by the University of Minnesota, have discovered a new nano-scale thin film material with the highest-ever conductivity in its class. The new material could lead to smaller, faster, and more powerful electronics, as well as more efficient solar cells. The discovery is being published today in  Nature Communications , an open access journal that publishes high-quality research from all areas of the natural sciences. Researchers say that what makes this new material so unique is that it has a high conductivity, which helps electronics conduct more electricity and become more powerful. But the material also has a wide bandgap, which means light can easily pass through the material making it optically transparent. In most cases, materials with wide bandgap, usually have either low conductivity or poor transparency. "The high conductivity and wide bandgap make this an ideal material for making optically transparent conducting films which could be used...

Nano Thermal Mechanical Rectification : A New way to harness heat to power computer

One of the biggest problems with computers, dating to the invention of the first one, has been finding ways to keep them cool so that they don't overheat or shut down . Instead of combating the heat, two University of Nebraska-Lincoln engineers have embraced it as an alternative energy source that would allow computing at ultra-high temperatures. Sidy Ndao, assistant professor of mechanical and materials engineering, said his research group's development of a nano-thermal-mechanical device, or thermal diode, came after flipping around the question of how to better cool computers. "If you think about it, whatever you do with electricity you should (also) be able to do with heat, because they are similar in many ways," Ndao said. "In principle, they are both energy carriers. If you could control heat, you could use it to do computing and avoid the problem of overheating." A paper Ndao co-authored with Mahmoud Elzouka, a graduate student in mechanica...